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ABSTRACT

By combining information theory, statistical decision theory, and maximum
entropy to address the decision fusion problems, a statistical decision fusion theory
is obtained.  The theory explains why decision fusion is so difficult and why the
performance of decision fusion systems does not always meet expectations.  The
theory suggests how statistical decision systems such as the conceptual "Family of
Systems" might be designed.  The theory clarifies why independent subsystems are
desired in data fusion systems.  A decision fusion function is obtained from the
theory for fusing independent decision subsystems.  An examination of the
characteristics of the fusion function shows that it can handle decision results from
subsystems operating at different hierarchical levels in the sets of decisions and
prior classes. This fusion arises naturally without the need to incorporate additional
principles to convert decisions and prior classes to other hierarchical levels.  In the
design of decision fusion systems, the subsystems can be designed to operate at
their own natural levels in the set hierarchy while the fusion can be designed to
operate at the most descriptive level. The fusion function can also be applied to
time evolving decision fusion systems and cast as a Bayes-Markov non-linear
filtering process.  The resulting process is similar to Kalman filtering and allows
for the design of decision systems that de-weights the influence of previous results
when new information is processed.   In summary, the characteristics of the
decision fusion theory have only just begun to be explored and a rich variety of
decision fusion system designs await discovery.

1. Introduction

At the 1998 IRIS National Symposium on Sensor and Data Fusion, work toward a decision fusion theory
was presented.1  The theory was obtained from a melding of statistical decision theory and information
theory.  This paper summarizes the progress made in the last year to extend the theory.  It has been
discovered that the new theory readily handles the fusion of information from different levels of
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abstraction in the set hierarchies, a capability highlighted as a superior characteristic of Dempster-Shafer
evidential reasoning.2 In counterpoint, the fusion of mixed hierarchy data with traditional Bayesian-based
fusion techniques has been problematic.  Given the Bayesian roots of the new theory, it can be stated that
a Bayesian decision theory has been discovered that solves the mixed hierarchy problem.

It will also be shown how the decision fusion function can be recast as a recursive algorithm.  The
recursive algorithm bears some resemblance to the Kalman filter algorithm. This parallel suggests that
techniques to decay or degrade old information may exist and that the recursive algorithm may be
extended to account for time dependent information loss, correlated data, and Bayes-Markov processes. In
addition, the recursive formulation provides new insights into the interpretation of the prior probabilities
in statistical decision theory.

2. The Decision Fusion Function

The statistical decision theory problem can be defined as the selection of a decision γ  from a possible set
of decisions Γ , given measurements v  in a feature space V  containing distributions ( )svF | of each
prior class s , that together compose a set S . The prior probabilities ( )sσ  for each prior class s  adjust
the conditional probabilities and affect the resulting decisions.  Many applications of statistical decision
theory have focused on the identification problem, which has a one-to-one correspondence between the
members of the prior set S  and the decision set Γ .  The information theoretic derivations depend upon
this one-to-one correspondence, although the theory can be applied to general decision problems that do
not possess this correspondence.

The integration of statistical decision theory and information theory results in the cost function,
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which gives a cost for each decision γ , given a measurement 1v .  A decision system is designed by
assigning each region in feature space to a specific decision.  Through the application of information
theory, the assignment of the decisions to the feature-space sub-volumes γV is done so as to minimize the
information loss (equivocation) between the prior set S  and the decision set Γ .

The cost function consists of two terms, the conditional probability of a measurement 1v  given prior class
s ,
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and the conditional probability of prior class s  given decision γ ,
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A belief matrix may be constructed from the collected set of conditional probabilities of Equation 3.

The cost function ( )1| vc γ  in Equation 1 can be viewed as a logarithmic distance measure from the
probability ( )γ|sp  to the probability ( )1| vsp  in a probability space with SN  dimensions.  With the
costs determined, the optimal decision is the one with the minimum cost,

( ) ( )( )11 ,min vcvD γ
γ

= . (4)

In the event of tie minimum costs, the decision rule can be extended for decision systems with one-to-one
correspondence between the prior class elements and the decision elements.  In these systems, the tie may
be broken by selecting the decision γ  that associates with the prior class s with the greatest conditional
probability ( )1| vsp .  If tie decisions still remain and a forced decision is required, random selection can
be used to force the decision.

A decision fusion cost function can be obtained from Equation 1.  For independent, orthogonal decision
subsystems, it is assumed that the probability density functions ( )svF |  are separable into products of
probability density functions in k orthogonal feature subspaces jv ,
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In addition, it is assumed that the decision volume integrals can be decomposed into products of integrals
over the decision sub-volumes γjV ,
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In general, the integrals of Equation 6 construct a confusion matrix. The decomposition assumes that the
full-feature-space belief matrix can be constructed from the element-wise product of the subspace
confusion matrices.

Given these assumptions, the cost function becomes
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The relative differences between the costs, and not the absolute magnitudes, indicate the strength of
conviction for the optimal decision.  Absolute cost is not a good indicator of conviction strength for a
given decision because the costs are logarithmic distances from the decision vectors.  A prior vector with
a higher probability for a given decision than the matching decision vector can have a higher cost than
that of a prior vector that is identical to the decision vector.  However, the costs of the other decisions
continue to increase at a greater rate than the cost of the optimal decision as the probability associated
with the optimal decision increases.

The absolute magnitudes of the costs are still useful in that they indirectly indicate the degree of
disagreement between the contributors of the fused decision.  Fusion of agreeing contributors will
decrease the winning decision cost while conflicting contributors will increase the cost.  With sufficient
conflict, the optimal decision may be different from those that would be selected by the individual
contributors.  The optimal decision is a compromise between the contributors in conflict situations.  When
there is total disagreement among the contributors, all costs are infinite.

The assumption of Equation 5 is directly related to the requirement that data fusion systems not process
redundant data.  This is algorithmically equivalent to redundantly processing a subspace of the full feature
space.  A second requirement for data fusion systems is that the contributed data be statistically
independent.  This is not always accomplished in practice and so reduced performance can be anticipated
in those cases.

Equation 6 is the more stressing assumption of the two.  It implies not only that the feature-space
distribution functions of the decision subsystems should be independent, but that the performance of the
decision subsystems, as reflected in the confusion matrices, should be independent.  This is unfortunately
almost never true in practice.  Violation of this assumption will generally result in information loss and
performance degradation.  This can only be avoided by fusion at the feature level.  Feature level fusion, in
contrast, is confronted with a problem that has been termed the "curse of dimensionality".  The
complexity of the feature space increases so rapidly with each additional feature that the multi-
dimensional probability density functions cannot be accurately estimated.  For the decision function of
Equation 1, the minimization of equivocation in large-dimensioned feature spaces becomes another
significant challenge in addition to the probability density function estimation problem.

In light of the challenges presented by feature level fusion, the losses from violation of Equations 5 and 6
may often be acceptable.  It is always possible to select specific subspaces of the features space for
feature level fusion if they violate the independence assumptions too severely.  Resources devoted to
feature level fusion for such subsystems may be well spent whereas those devoted to subsystems that
satisfy the independence assumptions may be poorly spent.  Violation of the assumptions in Equations 5
and 6 for decision level fusion and the curse of dimensionality for feature level fusion are what make the
decision fusion problem so difficult.

The decision fusion function of Equation 7 assumes that the contributing subsystems are trustworthy (at
least to the degree specified in the confusion matrices) and that all probability density functions and the
confusion matrices for each subsystem are conservatively and truthfully estimated.  Maximum entropy
techniques provide one possible method for generating the density functions since the resulting functions
should only capture statistically significant details in the training data sets.3  The extension of the decision
theory to include decision fusion problems with untruthful contributors is an intriguing thread that has
currently not been followed.  The influence of untruthful subsystems on the cost magnitudes suggests one
possible approach for detecting untruthful contributors.  Another possible approach is to analyze the
performance of the subsystems over repeated trials to obtain statistically significant performance



measures that can be used to verify that the actual contributor's performance matches the reported
performance reflected in the confusion matrices.

3. Decision and Prior Class Hierarchies

Because the cost function in Equation 7 is fundamentally a distance measure, procedures can be
developed to change the levels of abstraction of the prior class and decision set hierarchies by mapping
probability-space vectors from a space with one dimensionality to one with another. The elements of the
prior-class set are now considered to be independent subsets of a global set of prior classes containing one
or more elements.   The union of all the subsets must be the global set and the intersection of any two
subsets must be the empty set.  The same relations hold for the global set of decisions.  The assignment
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will be adopted to simplify the following notation. For prior class expansion (for example { }2s  to
{ }BA ss 22 , ), the components of the prior probabilities, density functions, and confusion matrices are
expanded through mappings such as
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If the expanded prior probabilities A2σ  and B2σ  are known, they are used in the expansion.  When they
are unknown, a reasonable option is to distribute 2σ  equally between As2  and Bs2 .  The fundamental
assumption in the expansion is that the probability density functions for the expanded classes are
identical, leading to a basic duplication of terms for the probability density functions and integrals.

Decision expansion (for example { }2γ  to { }BA 22 ,γγ ) is accomplished with mappings such as
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Only the confusion matrix is modified for decision expansion.  The distribution of the rows of the
confusion matrix may be scaled by the prior probabilities although the scale factors cancel in the cost
function.  The scaling is done to keep the sum of the confusion matrix columns equal to one.

Prior class contraction (for example the contraction of { }32 , ss ) is accomplished with a mapping such as
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The combined density function is a prior-weighted sum of the original density functions.

Decision contraction (for example the contraction of { }32 ,γγ ) is a mapping that again uses prior-
weighted sums, such as
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A primary benefit obtained from the expansion rules is that the expansion of an optimal decision subset to
multiple decision subsets results in the expanded decision subsets being equally optimal in terms of cost.
Expansion by traditional Bayesian methods usually reduces the probabilities assigned to the prior classes
to the point that an unexpanded class may be selected as the optimal decision. This pitfall is avoided
because the characteristic decision vectors undergo a dilution comparable to that of the measurement
based probabilities.  The contraction process avoids the same problems to a lesser degree.

It should be noted that contraction and expansion are not inverse operations.  Expansion followed by
contraction will result in the original parameters, but contraction followed by expansion will generally
result in different matrix and vector elements.  This is because information is lost during the contraction
operation that cannot be restored through the expansion operation.  The information lost during
contraction leads to the possibility that the optimal decision after re-expansion may not correspond to the
optimal decision prior to expansion.

With the ability to change the hierarchical levels of the prior classes and the decisions, the next natural
step is to contemplate the existence of unknown elements in the prior class set and decision set.  A fully
degenerate global prior-class set or a decision set consists of a single subset containing all the global set
elements. Expansion of the single subset to more descriptive levels creates additional subsets that provide
greater detail and focuses the decision system on the elements of interest.  The expansion process can be
assumed to always contain a subset with a collection of elements that consists of  "everything else".  This
set can also be considered to be a subset of "unknowns".  A subset of "unknowns" provides a means to
account for uncertainty.  Dempster-Shafer evidential reasoning accounts for uncertainty through the



power set Θ  (the set of all sets).2  A significant distinction between Dempster-Shafer's Θ  and our
unknown subset is that Θ  contains "everything" and our unknown subset contains "everything else."
This distinction is due to the requirement that our subsets contain no common elements whereas the
subsets in Dempster-Shafer evidential reasoning are allowed to contain common elements.

4. Recursive Decision Algorithms

Recasting Equation 7 as a recursive algorithm proves to be instructive.  A decision fusion process for time
series information from a single sensor is used as the model to develop the recursive algorithm. The
resulting recursive algorithm has traits that are shared with the Kalman filter algorithm.  As with the
Kalman filter algorithm, there is an initial state estimate,
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The initial probability state estimate ( )s0,0σ , and belief matrix ( )γ|0,0 sB  are formed from the prior
probabilities.  The belief matrix is somewhat synonymous with the covariance matrix of the Kalman
filter. The state is propagated to the next time step, which, for now, is an identity operation,

( ) ( )ss tttt 1,11, −−− = σσ , (14)

( ) ( )γγ || 1,11, sBsB tttt −−− = . (15)

Next, the prior probabilities and belief matrices are updated with new data,
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A decision can then be selected at this point in the cycle through the use of the cost function,
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The recursive algorithm returns to Equation 14 to begin the next time step.  Examination of Equations 13
through 18 shows that the recursive algorithm is identical to the fusion function in Equation 7.

With a basic recursive function, extensions can be considered.  The first extension that can be
contemplated is to change the initial state values in Equation 13.  An important characteristic of the
decision fusion function of Equation 7 is that an identity operator exists.  Fusion with the identity operator
does not modify the resulting costs.  A simple interpretation in terms of decision fusion is that the identity



operator represents a maximally indifferent expert, who is always incapable of making a decision and thus
does not influence the resulting decision.  The identity operator is
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for all prior classes and decisions, where SN  is the number of elements in the set of prior classes.  The
initial state in the recursive algorithm can be selected to be the maximally indifferent state,
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The resulting decisions that are obtained as the algorithm executes arise from the information
accumulated in the probability state estimates and the belief matrix.  The prior probabilities in Equation 7
can be given a strict interpretation as being obtained entirely from previously accumulated evidence.  This
interpretation leads to the next extension.  If ( )sσ  arises from accumulated prior information, then the
same ( )sσ  terms in the initial belief matrix ( )γ|0,0 sB  of Equation 13 are not necessarily correct and
should be replaced with an accumulated belief matrix.  With the assumption that initial, non-maximally
indifferent probability state estimates are due to accumulated information, then the decision fusion cost
function of Equation 7 should be amended to allow for an accumulated belief matrix, such as would result
from the repeated application of Equation 17.  Such a modified system could make decisions before any
actual information is processed.  Decision systems can thus be created that are biased to a particular
decision and must accumulate sufficient evidence in support of an alternate decision before that alternate
decision can be selected.

The next extension to the recursive algorithm is not nearly so obvious, given the limited discussion on
information theory and the construction of the confusion matrices.  The confusion matrix ( )sPt |γ  is
obtained by minimizing the equivocation (information loss) between the prior classes and the decisions.
The equivocation minimization is influenced by the values of the prior probabilities.  This minimization is
achieved through the optimal assignment of decision regions throughout feature space.  Given this, the
natural extension to the recursive algorithm is to define new feature-space decision regions so as to
minimize equivocation at each recursive cycle.  This minimization would occur between Equations 15
and 16. Equivocation for the recursive algorithm is



( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

�

��
�
�

�

�

��
�
�

�

�

′′

×�
	



−=Γ ��

′
−

−

Γ
−

S V
tttt

V
tttt

S V
tttt

dvvsvFsB

dvvsvFsB

dvvsvFsSH

|||

|||
ln

|||

1,

1,

1,

γδγ

γδγ

γδσ

, (21)

where ( )vt |γδ  is the function that maps each element of feature space to a decision.  Only the decision
function may be modified to minimized information loss since all other functions are assumed fixed.
Assuming that other functions can be modified breaks the recursive nature of the system.

It is doubtful that recursive equivocation minimization will find much use in real-time applications due to
the difficult and time consuming nature of the minimization.  It does however maximize the additional
information that can be accumulated at each cycle of the recursive algorithm without abandoning the
algorithm's recursive nature.  It also demonstrates the non-linear character of the generic decision problem
and why it is so difficult to design optimal decision systems of any reasonable complexity.

The last extension to be considered involves Equations 14 and 15.  Given the previous remarks on the
recursive algorithm's relationship to Kalman filters, it is natural to replace the state propagation equations
with an operation other than an identity operation.  A natural choice is a Bayes-Markov process that
modifies the prior probabilities and belief matrices at each time increment.  A common response that has
been encountered with this proposal, viewed in terms of identification systems, is "Why would one ever
wish to do this?"  In the view of more general decision systems, there are a number of reasons that are
immediately obvious.  For decision systems where states may change with time, it is a requirement.  An
example of such a decision system would be one that is not only required to identify targets, but decide on
the intentions of the targets.  Clearly the intentions will change with time and can be modeled with a
Bayes-Markov process.  Additionally, decision systems could be designed that are predisposed to evolve
to a given decision unless sufficiently convincing information is received to force a different decision.
When the supporting information is no longer received, the system will eventually return to a default
decision.

A third possible use of a Bayes-Markov process is in cases where the incoming information is correlated
between cycles.  It may be possible to account for this correlation by reducing the information content of
the accumulated state and belief matrix or the probability densities and confusion matrices that are
updating the state.  Degrading the information in the accumulated state and belief matrix would give a
decision system that avoids becoming locked into a decision.

Research is currently underway to identify the specific processes that will generate desirable time
dependent behaviors.  For example, a desirable feature of information decay functions is that if no new
information is received during a cycle, or maximally indifferent information is received, the resulting
decision does not change.  It remains to be determined if the vectors of the belief matrix and the prior
probabilities can both use the same decay function and satisfy this requirement.  It may be necessary to
use different functions for the belief matrix vectors and the prior probabilities, in which case the functions
should be related through some guiding principle.  In addition, a correspondence between the level of
correlation between prior accumulated data and the update information and the de-correlation functions
remains to be identified.



Given the recursive algorithm and its extensions, an information theoretic interpretation of the process
can be made.  The self-information ( )SI of the prior classes is

( )−=
s

ssSI )(ln)( σσ . (22)

This is the information that an observer believes can be extracted from a system through measurement.
The choice of the distribution in Equation 20 is a logical choice for the initial state since this is the state
with maximum self-information.  Measurements are conducted to extract this information from the
system.  Repeated, confirming measurements will increase the probability of one prior class and decrease
the rest, reducing the self-information that the observer believes to remain for further extraction.  The
limit to the recursive process has a single element of S with a probability of one and the remaining with
zero probabilities.  The self-information in this limit is zero; the observer believes that there is no further
information to extract from the system. Therefore, additional measurements have no effect on the prior
probabilities or the optimal decision.  Conflicting measurements have the opposite effect in comparison to
confirming measurements, and cause the probabilities among the prior classes to converge to common
values and the self-information to increase.  The observer then believes that the self-information of the
system was previously underestimated and that more information remains to be extracted.

The belief matrix also has information theoretic interpretations.  The decision vectors comprising the
rows of the belief matrix represent the average distribution of prior probabilities for each decision.  This
distribution captures the average amount of information remaining in a system after each time step,
assuming that the series of decisions are all confirming decisions. The decision vectors of the belief
matrix evolve with each increment of the recursive process and model the evolving averages of the
information remaining to be extracted for each decision.  In most decision systems, the decision vectors
will approach the limits discussed for repeated, confirming measurements.

5. Decision System Design Options

The decision theory provides for a multitude of options for designing decision fusion systems.
Regardless of the design, the theory requires that the feature subspaces be statistically independent.  In
addition, the decisions that result from the decision fusion function should reflect those decisions that
would result from fusion at the feature level.  When this second requirement is sufficiently violated such
that the fusion system does not meet its performance specifications, fusion must be pursued at the feature
level.   In addition, the prior class hierarchy must be common throughout the fusion system.  As will be
seen, the same requirement in not necessarily imposed on the decision set hierarchy.

The first significant design decision is whether to design a centralized or decentralized fusion system. For
centralized systems, the subsystems share a common mission objective that is determined by a control
center.  As for all decision fusion systems, the prior class hierarchy must be common throughout the
system.  The centralized design assumes a common decision hierarchy as well.  If the subsystems
minimize equivocation in real-time, the center must report the latest available prior probabilities to the
subsystems.  The subsystems then report updated confusion matrices along with each probability density
vector.  If no real-time minimization occurs, the confusion matrices can be reported at subsystem startup
or maintained in a database at the control center.  If communications bandwidth is a problem, the
probability density vectors reported to the control center may be reduced to a few significant prior class
probabilities that the center uses to reconstruct an approximation to the original vector. If communications



bandwidth limits are severe enough, a single prior class enumeration may instead be sent to the control
center and used to select a characteristic probability density vector from a database.

For decentralized systems, there are more options to consider because the members of the system may be
pursuing different missions.  If the mission is common to the system, such as target detection and
identification, then most design decisions are similar to those of the centralized system. The decentralized
system requires more communications bandwidth than the centralized system because no control center is
available to coordinate the network.  As a subsystem joins the network, it may need to request priors and
belief matrices from the active subsystems to bootstrap its internal decision system.  The joining
subsystem can select the best set of priors that it receives from the responding subsystems to complete its
bootstrap.  As each subsystem processes measurements, it broadcasts its probability density vectors and
confusion matrices to the other subsystems in the network while receiving the same kind of information
from the others.  Each subsystem independently fuses its accumulated information and makes
independent (and hopefully consistent) decisions.

Some of the theoretical underpinnings of the decision fusion theory may have to be abandoned to design
decentralized systems with members that are pursuing independent missions. An example of such a
system might be one with subsystems that make internal resource allocation decisions.  Subsystems with
unique missions imply that the subsystems are making different kinds of decisions.  Decisions that do not
share a common set hierarchy and therefore lead to incompatible belief and confusion matrices cannot be
fused by the current theory.  In this kind of system, the subsystems' confusion matrices may not be
determined by minimizing information loss. In a decentralized system of this magnitude, only prior
probabilities and probability density vectors can be exchanged between the members in the system.  The
set of decisions in each subsystem will be organized toward completing their unique missions.  The
control center may still appear as an element of a decentralized decision system, but with the role of
mission coordination instead of decision coordination.  The members of the network would independently
select optimal decisions to satisfy their unique mission objectives.

For decision fusion systems of either type, recursive algorithms may be implemented in two principal
ways.  In the first, the subsystems report sequentially independent data that the receivers accumulate with
a recursive algorithm.  In the second, the subsystems accumulate data with a recursive algorithm and
report the accumulated data.  Here, the receiver incorporates the new data from an accumulating
subsystem into the fusion system after it discards that subsystem's previous data.  The recursive algorithm
extensions lead to a wide range of options for system designs.  Additional study is still required to
determine best ways to implement the recursive algorithm and its possible extensions to meet the various
needs of data fusion systems.

6. Summary

Continued study of a decision fusion theory, constructed from statistical decision theory and information
theory, has revealed a number of desirable characteristics inherent in the theory. The theory allows for the
prior classes and the decisions to be two distinct sets, without necessarily a one-to-one correspondence
between them.  The information theoretical connection to the theory is weakened without the one-to-one
correspondence, but a more general decision theory can be developed.  The decisions of the theory are
represented as characteristic partitions of the prior classes.  Selection of an optimal decision is
accomplished by selecting the decision with a characteristic partition that most closely matches the
probabilistic partitioning indicated by the measurements, through the probability density functions of the
prior classes.



For decision systems composed of independent subsystems, a decision fusion function is obtained.  The
fusion function allows for the hierarchical levels of the sets of prior classes and decisions to be
independently altered to suit the decision system requirements.  Decision subsystems can be designed to
operate at their natural level of abstraction in the prior class and decision set hierarchies.  Decision fusion
can then be accomplished after the subsystem data are transformed to the appropriate levels in the set
hierarchies.

The decision fusion function has been recast as a recursive algorithm.  The recursive algorithm provides
information theoretical insights into the interpretation of the role of prior probabilities.  Prior probabilities
are simply the previous evidence that has been accrued in the recursive decision process.  The recursive
algorithm shows that the belief matrices also may accrue.  Accrued belief matrices permit the design of
biased decision systems.  Biases are not to be considered as a negative characteristic in this type of
application, but as a means to encapsulate previous information or to design the fusion system to meet
performance specifications.

Work continues on the original motivator of this theoretical study, the development of an identification
fusion system for Kwajalein Missile Range (KMR). This system will combine metric, beacon, and
signature information from multiple radars and optical sensors, as well as from human operators, to create
a fused picture of ballistic missile complexes.  The fused picture will provide metric data and identity
estimates for the objects in the complex.  This information will be used to aid the sensors in satisfying
their data collection requirements. Within the year, the KMR identification fusion system should be
implemented as a real-time program and my collaborators and I will begin to obtain results for the system
in an operational environment.  A second paper, co-authored with Michael Seibert, is being presented at
this conference and provides an informative overview of this fusion system.

A search has begun to identify other applications that might benefit from the recently developed decision
fusion theory.  Discussions have begun with researchers who are evaluating different discrimination
systems for use in ballistic missile defense applications, as well as with experts evaluating combat ID
systems.  I hope to evaluate the decision fusion theory against other techniques in head-to-head tests in
the near future.

Theoretical studies continue, in order to gain a better understanding of the recursive fusion algorithm and
how to best implement more advanced recursive algorithms.  Areas under investigation include Markov
processes, exponential families, and control theory.  Additional areas of study that relate to the decision
fusion theory hold intense interest.  One area relates to the probability density functions in the theory,
which are fixed functions in the decision theory.  An examination of techniques for the generation of
probability density functions is on the list of topics to examine. Maximum entropy techniques, learning
algorithms, and neural networks are possible fields that might prove fruitful. The theoretical analysis of
decision fusion systems that do not have fully trustworthy contributors is another possible area of study.
Theoretical results in this area could influence traditional intelligence gathering activities.  It is possible
that techniques could be developed to evaluate the reliability of information sources and identify sources
that are supplying misleading information.  Through the course of these future studies, I hope to gain a
deeper understanding of the theory and how it relates to other theoretical efforts in decision fusion.
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